Experimental investigation of injection-induced fracturing during supercritical CO₂ sequestration

Lei Wang¹,²,⁎, Bowen Yao¹, Haojun Xie¹, Timothy J. Kneafsey³, Philip H. Winterfeld³, Xiaolong Yin¹, Yu-Shu Wu¹

¹ Petroleum Engineering Department, Colorado School of Mines, United States
² College of Petroleum Engineering, China University of Petroleum (East China), China
³ Earth Science Division, Lawrence Berkeley National Laboratory, United States

ARTICLE INFO

Keywords:
CO₂ sequestration and storage
Supercritical CO₂
Fracturing
Geomechanics
True tri-axial stress
Caprock

ABSTRACT

Leakage risk assessment is an inevitable procedure in permanent sequestration and storage of CO₂ in deep saline aquifers and depleted oil and gas reservoirs, where the integrity of caprock is most critical. Low porosity and low permeability concrete cubes were employed as caprock analogs to investigate the supercritical CO₂ injection-induced fracturing processes under true tri-axial stress conditions. A systematic experimental procedure, consisting of active acoustic emission measurement, pressure decay, injection pressure and temperature monitoring, fracture coloring, and gas fracturing, is formulated to qualitatively and quantitatively characterize the injection-induced fracturing processes and fracture morphology. Occurrence of injection-induced fracturing can be directly identified from peaks of borehole pressure profiles as well as sharp drops on temperature profiles due to CO₂ expansion, but generally there was no fracture propagation plateau appearing for the 20 cm rock cubes with zero pore pressure. Acoustic wave signatures, including both waveform change and arrival time delay, can effectively capture the extension of induced fractures inside the opaque rock. Initiation and propagation of supercritical CO₂ injection-induced fractures are highly dominated by the tri-axial stresses, following the general trend of continuum mechanics at high stress levels with large stress difference. As the stress difference decreases, induced fractures branch off in relatively arbitrary directions. For these supercritical CO₂ injection-induced fracturing experiments, poroelastic mechanics model makes a decent fit with the measured breakdown pressure of the caprock analogs. Findings in this study are valuable for risk analysis and operation optimization of geological CO₂ sequestration and storage as well as for CO₂ fracturing design and implementation in shale and tight reservoirs.

1. Introduction

Geologic storage is a practical means for sequestering large amounts of CO₂ for long-term purpose (Ehlig-Economides et al., 2010; Leung et al., 2014). Saline aquifers and conventional oil and gas reservoirs are considered as the most prospective candidate sites for CO₂ geologic storage, seeing that they are pervasive around the world and are mostly well sealed by low permeability overlying caprock, commonly referred as shale. Apparently, injecting large amounts of CO₂ into geologic reservoirs brings about elevated pressure and significant changes in in-situ stress states, which could possibly reactivate existing natural fractures/faults or even create new fractures in the caprock (Lee et al., 2012). Such high conductivity pathways, once break through the caprock, could result in CO₂ seeping upward into other formations or further overflowing to the surface. Since typically the reservoir pressure and temperature are above the critical pressure 7.38 MPa (1070.4 psi) and temperature 31.0 °C (304.2 K) of CO₂ (Suehiro et al., 1996), sequestered CO₂ is supercritical with properties midway of the gas and liquid states. For instance, in the In Salah CO₂ storage project, the bottomhole temperatures and pressures of injection wells KB 501 and 503 were around 55 °C and were generally above 3600 psi (Bissell et al., 2011). To meet the goals of developing and validating technologies to ensure 99% storage permanence and supporting industry to predict CO₂ storage capacity in geologic formations within 30% (DOE, 2014), evaluation of the integrity or proper design of a supercritical CO₂ (scCO₂) flow and geologic storage system is critical for a large amount injection and safe storage for a long time. Thus, there is a need to understand the formation of leakage pathways and the enhancement

⁎ Corresponding author.
E-mail address: lwang@mines.edu (L. Wang).

The first two authors have equal contribution to the experiments.

http://dx.doi.org/10.1016/j.ijggc.2017.05.006
Received 23 January 2017; Received in revised form 14 April 2017; Accepted 9 May 2017
Available online 25 May 2017
1750-5836/ © 2017 Elsevier Ltd. All rights reserved.
of flow through those pathways in sealing formations caused by scCO₂ injection-induced fracturing and associated geomechanical effects.

1.1. scCO₂ injection-induced fracturing

Existing natural fractures can be reactivated and new fractures can be created by injecting fluids into storage or sealing formations at high pressure, commonly referred as hydraulic fracturing, which is a common process in developing shale and tight reservoirs in the oil and gas industry these days. Initiation and propagation of fractures have been extensively studied within the context of hydraulic fracturing using water, oil, or polymer gels. (Daneshy, 1978; Warpinski et al., 1982; Weijers et al., 1996; Bunger et al., 2005; Wang et al., 2016a,b). Liquid CO₂, as a fracturing fluid, has also been injected at high flow rate and pressure to fracture tight oil and gas reservoirs. It is estimated that in North America over 1000 wells in tight sandstone and shale formations have been fractured using liquid CO₂ since the 1980s (Lillies and King, 1982; Sinal and Lancaster, 1987; Gupta and Bobier, 1998). In these field practices, liquid CO₂ was gelled to achieve high viscosity up to tens of centipoises (King 1983; Gupta et al., 2003 Gupta et al., 2003), by which sand proppant was suspended for propping up the generated hydraulic fractures. Hydrocarbons are then able to flow out of the rock matrix into fractures and converge to the wellbore more easily.

Regarding sequestration and storage of scCO₂ in geologic formations, the objective of avoiding fracturing sealing formation is opposite to that of hydraulic fracturing. Still, obtaining the fracture initiation condition as well as the dynamics of fracture propagation induced by scCO₂ injection pressure in sealing formation is the utmost priority for leakage risk analysis, simulation prediction, and field implementation (Rinaldi and Rutqvist, 2013; Huang et al., 2015; Wang et al., 2016a,b). However, when the injected fluid is pure liquid or supercritical CO₂, laboratory experiments on evaluating the sealing rock fracturing behaviors are relatively rare. Ishida et al. (2012) injected liquid and supercritical CO₂ into 17 cm granite cubes to compare the fracturing behaviors under hydrostatic stress of 1 MPa. Based on lower breakdown pressure and more acoustic emission sources in the case of scCO₂, the authors suggested that fractures generated by scCO₂ are more wavelike and have more branches than those by liquid CO₂, attributing to the lower viscosity of scCO₂. Under near reservoir conditions, Rinheit et al. (2016) investigated the chemical-mechanical responses of sandstone cores obtained from Lower Tuscaloosa Formation, which is a CO₂ storage horizon. The chlorite-cemented cores saturated with scCO₂-saturated brine showed lower yielding stress and failure envelope than in-situ stress, as a possible result of the reaction between chlorite and acidic scCO₂-brine. In addition, there are CO₂ injection tests carried out in shallow wells in carbonate vadose zone, nonetheless, the aim was to monitor the temporal and spatial distribution of the CO₂ plume while CO₂ was injected as gas (Rillard et al., 2015; Rhino et al., 2016).

1.2. Breakdown pressure correlation

Initiation of hydraulic fractures in non-poroelastic rock is only a function of the stress state and the tensile strength of the rock according to continuum mechanics. The breakdown pressure when fluid is injected into borehole is (Hubbert and Willis 1957)

\[P_b = 3\sigma_h - \sigma_t + \sigma_r - P_p \]
(1)

where \(\sigma_h \) and \(\sigma_t \) are the minimum and maximum horizontal stress, respectively. And \(\sigma_r \) is the tensile strength of the rock, \(P_p \) is the pore pressure.

If the rock is assumed as poroelastic, then the breakdown pressure is (Haimson and Fairhurst 1967; Detournay and Cheng 1992)

\[P_b = \frac{3\sigma_h - \sigma_t + \sigma_r - \eta P_p}{2 - \eta} \]
(2)

where \(\eta = \alpha(1 - 2\nu)/(1 - \nu) \), a function of Biot’s constant \(\alpha \) and Poisson’s ratio \(\nu \).

Breakdown pressure calculated from Eq. (1) is the upper bound for rock samples. The assumptions for the above equations exclude several factors, such as fluid viscosity, injection rate, rock sample size, and thermal stress, which could also affect the breakdown pressure (Schmitt and Zoback, 1992; Detournay and Cheng, 1993; Stoeckhert et al., 2015; Li et al., 2016). In view of the special fluid property, whether scCO₂ injection-induced fracturing could be accurately quantified by these equation is unknown.

This study developed a series of quantitative experimental approaches for understanding and predicting geomechanical effects on CO₂ injection in the subsurface, and provided evaluation tools and techniques for assessing and validating CO₂ flow and risk of leakage through low permeability caprock analogs-cubic concrete blocks. Specifically, a tri-axial loading frame was employed to study fracture initiation and propagation in concrete blocks caused by scCO₂ injection into the centered borehole. Tri-axial stress states, injection pressure, fracture mechanical responses, permeability change of caprocks, injection-induced fracture patterns are investigated by real-time data acquisition, pressure decay tests, acoustic emission tests, and dye coloring.

2. Experimental procedures and methods

In the scCO₂ injection-induced fracturing experiments, we used homogeneous concrete blocks which have similar porosity, permeability, and geomechanical properties to represent the rock of the storage/caprock formations. The concrete blocks were 20 cm cubes which were prepared by mixing sand, Portland cement, and water in the mass ratio of 2.50:1.00:0.55 (Yao, 2015). It is worth mentioning that the Portland cement used was manufactured from the calculation of the Niobrara shale outcrop. After curing for more than 40 days, the average porosity and permeability of the dry concrete samples are 9.56% and 9 micro-Darcy, respectively (Alqahtani, 2015). The tensile strength measured by Brazilian tests for three cylindrical samples is 356, 488, and 576 psi, with an average of 473 psi. Borehole with diameter of 2.5 cm was first drilled from the center of one sample face to its center, i.e. 10 cm long. Then steel tubing was cemented into the borehole with epoxy to the depth of 7.5 cm, leaving the 2.5 cm bottom section uncased. Prior to the scCO₂ injection experiments, the concrete samples were characterized by acoustic emission and pressure decay tests, which were repeated after the injection for comparison. Supercritical CO₂ were then injected into the bore hole to build up pressure and to induce fracturing, during which the pressure and temperature in the borehole were continuously recorded. Injection rate was adjusted through the pump controller.

Specifically, for each concrete sample, the following experimental procedures were carried out:

- Drill borehole and install wellhead into the sample
- Pre-injection stress loading for 40 min at planned tri-axial stresses
- Take pictures of six faces of the cubic sample
- Active acoustic emission measurements
- Borehole pressure decay tests from 180 psig under no stress loading
- Inject 60 °C scCO₂ into the pre-heated 60 °C concrete block under planned tri-axial stress loading until it is fractured,
- Active acoustic emission measurements
- Take pictures of sample faces
- Borehole pressure decay from 180 psig under no stress loading
- Inject dye solution into the fractured sample
- Inject high-pressure N₂ to break down the fractured sample,
- Take pictures of fracture planes.

In Step 2, tri-axial stresses were first applied for 40 min before any tests to attenuate the compressibility of the concrete blocks. Active acoustic emission tests employ P and S wave actuators and receivers on
opposite sample faces to detect the injection-induced fractures inside the concrete samples non-destructively, based on that fractures on the way of P and S-wave transmission can affect their waveform and arrival time (Alqahtani et al., 2016). In Step 5, by building up borehole pressure to 180 psig and let it drop naturally, the gas leak-off rate or the gas permeability before and after the scCO2 injection can be directly reflected on pressure-time profiles. It is worth noting that the borehole was sufficiently exposed to CO2 in air for a few days for wellhead installation and pre-injection characterization tests, thus the carbonation reaction during scCO2 injection is considered negligible in these experiments.

Injection of scCO2 into concrete blocks under tri-axial stress loading in Step 6 was carried out on an experimental system as shown in Fig. 1, which consists of a scCO2 generation and injection sub-system, a tri-axial stress loading frame, and a data logging and processing sub-system. Liquid CO2 was transferred to the ISCO pump cylinder wrapped by a heating tape, which can heat the pump cylinder to the desired 60 °C. The concrete sample was pre-heated at 60 °C in an oven for 8 h before being placed in the tri-axial loading frame, which can exert true tri-axial stresses to the desired level. Details of the tri-axial loading frame can be found in Cha et al. (2016). The data logging and processing sub-system monitored the tri-axial stresses in x, y, and z directions as well as the borehole pressure and temperature through a pressure transducer and a thermocouple set inside the borehole in real-time.

As shown in Fig. 2, faces of each concrete sample are numbered from 1 to 6 on their upper right corner, with x-stress loading on face 2 and 4, y-stress loading on face 1 and 3, and z-stress loading on face 5 and 6. Active acoustic emission measurement locations on concrete sample faces (left-face numbering, middle-face 1 or 2, right-face 5).

3. Results and discussion

Five concrete samples, as listed in Table 1, were utilized for scCO2 injection-induced fracturing experiments under different tri-axial stress conditions. All the borehole pressure and temperature values were above the critical point of CO2 when these samples were fractured. The injection rate was kept constant at 40 ml/min for all samples. Each experiment was conducted with different tri-axial stresses by first changing stress loading levels for sample 1, 2, 3, and then stress differences for sample 4 and 5.

3.1. Pre-treatment stress loading

All concrete samples were prepared in mold without external confining stress, leaving them compressible under tri-axial stresses of high levels, from which the resultant compressibility could interfere with the acoustic signatures caused by induced fractures. Hence, each concrete sample was loaded with tri-axial stresses for about 40 mins to partially eliminate the effect of compressibility for following acoustic measurements. Fig. 3 shows the true tri-axial stress profiles loaded onto sample 2 using air pumps. Stresses in x, y, and z directions were increased stepwise to avoid any damage to the concrete sample. The slowly relaxing stresses were exerted quasi-static. That is, to maintain the desired stress levels, air pumps were pressed occasionally, bringing about the corrugated curves. Pre-injection tri-axial stress profiles for other samples are similar, for brevity they are omitted here.

3.2. Pressure and temperature during scCO2 injection

During the injection of scCO2 into concrete samples, tri-axial stresses applied on the sample, and borehole pressure and temperature were continuously monitored. Note that the tri-axial stresses were continuously relaxing, thus the actual stresses applied were not exactly the same as but were close to those planned in Table 1. The air pumps were pressed to maintain the stresses whenever in need. In the following sections, stress relevant analyses use the actual tri-axial stress values.

Under planned tri-axial stresses of x:y:z = 1000:1625:2250 psi, sample 1 was treated by injecting scCO2 into borehole at a constant rate of 40 ml/min. The tri-axial stresses and borehole pressure and temperature are shown in Figs. 4 and 5, respectively. The concrete pre-treatment stress loading of sample 2 for 40 mins.
block was fractured at 435.1 s, when the injection pressure reached 1091.5 psig. This peak pressure corresponds to the responses on tri-axial stress loading in x, y, and z directions in Fig. 4. Specifically, the x-stress was slightly humped, while y-stress and z-stress fell a little when the injection pressure peaked at 435.1 s, indicating that the major fracture planes were generated perpendicular to the x-axis. When the peak pressure was achieved, the borehole temperature was 46.8 °C, thus the sample was fractured under supercritical conditions. Right after the peak pressure, the borehole temperature drastically dropped by about 4 °C, due to CO2 leakage and expansion from the borehole to the outer space. After induced fracturing, the borehole pressure quickly decreased to atmospheric pressure with leaking sound, which clearly indicated that the fractures propagated to the outer surface of the concrete block. Different from hydraulic fracturing, scCO2 induced fracturing occurred instantaneously in this 20 cm concrete cube and does not have a recognizable plateau of fracture propagation after the peak on the pressure profile.

Concrete sample 2 was fractured with scCO2 under planned tri-axial stresses of x:y:z = 1250:1875:2500 psi, as shown in Fig. 6. On the pressure profile, there are three peaks, which come from three intermittent scCO2 injection cycles due to limited volume of the pump cylinder (508 ml). After finishing injecting one pump cylinder of scCO2, liquid CO2 was transferred to the pump cylinder and heated to 60 °C before injection continued. During this time gap, the borehole pressure decreased due to scCO2 leak-off. At 3669.1 s, the borehole pressure reached the highest peak of 1641.2 psig and started decreasing even though pump was still running at 40 ml/min. This peak pressure corresponds to the leveling-out slope on x-stress in Fig. 6, while y-stress and z-stress did not show obvious changes, suggesting that the major induced fracture planes were created perpendicular to the x-axis. What’s more, during injection x-stress decreased faster than y-stress and z-stress, which means x-stress was the primary counterbalance to the injection pressure. When the highest peak pressure was achieved, the borehole temperature was 34.8 °C, thus the sample was fractured under supercritical conditions. Around the highest pressure peak, borehole temperature only dropped about 1 °C, which is much smaller than that of sample 1. In addition, after pump stopped, the decay of borehole pressure significantly slowed down even the pressure was still above 1000 psig. These two different phenomena suggested that elevated tri-axial stress suppressed the propagation of fractures and as borehole pressure decreases, some of the fractures were closed due to high confining stress.

The tri-axial stresses for sample 3 was planned as x:y:z = 1500:2125:2750 psi, as shown in Fig. 8. The borehole pressure and temperature during injection of scCO2 are shown in Fig. 9. Two
cycles of scCO2 were injected to induce the fracture development. The highest peak pressure of 2130.2 psig was achieved at 1006.1 s, after which the borehole pressure steeply decreased. This peak pressure corresponds to a noticeable hump on the x-stress in Fig. 8, while there are no obvious responses on y-stress and z-stress, indicating that the major fracture planes were generated perpendicular to the x-axis. Around the peak pressure, the borehole temperature drastically dropped from 43.6 °C to 34.2 °C, due to fast leakage and expansion of the scCO2. Also on the pressure profile, the decreasing rate slows down after the borehole pressure drops below 1250 psig, reflecting the partial closure of fractures under high confining stress conditions.

Two cycles of scCO2 were injected into sample 4 under planned tri-axial stresses of x:y:z = 1250:1562:1875 psi, as shown in Fig. 10. The borehole pressure and temperature changes during scCO2 injection are shown in Fig. 11. During the second cycle of injection, the sample was fractured with pressure reaching the highest peak of 1641.9 psig at 1217.5 s, when the borehole temperature experienced a sharp drop from 45.2 °C to −7.9 °C, associating with gas leaking sound. This sharp drop in temperature is a result of the fast leakage and vaporization of the high-pressure scCO2. Corresponding to the fracturing occurrence, there are no remarkable fluctuations on tri-axial stress profiles, except a mild mitigation in the decreasing y-stress. This indicates that the major induced fracture planes were not perpendicular to the x-axis. Note that the temperature first rose from the lowest point attributing to continued scCO2 injection, and then dropped again because some new fractures propagated to the sample surface accelerating the scCO2 leakage and evaporation.

The planned tri-axial stresses applied on sample 5 for scCO2 injection were x:y:z = 1250:2187:3125 psi (Fig. 12) with the largest stress difference of 937 psi among all the experiments. The concrete sample was fractured during the second cycle of scCO2 injection, with a peak pressure of 1195.5 psig at 1475.0 s, as shown in Fig. 13. Also, at the fracturing point, the borehole temperature dropped from 39.9 °C by 3.5 °C, due to scCO2 leakage and vaporization. In Fig. 12, a noticeable hump showed up on x-stress at the fracturing point, while there are no obvious changes on y-stress and z-stress profiles.

3.3. Active acoustic emission measurements

After scCO2 injection, active acoustic P and S waves were measured on each pair of faces of each concrete block. These post-injection acoustic signatures are compared with pre-injection ones to examine whether fractures have been generated across the pathway connecting the actuator and receiver locations.

For concrete sample 1, the P and S-wave measurements on face 1 & 3 are shown in Figs. 14 and 15, respectively. The black signals were
measured before scCO2 injection and red ones were measured afterwards. As can be seen from Fig. 14, except location 1–3 and 9, all other locations show dramatic changes in waveforms, suggesting a major fracture plane cutting across the connecting lines between these locations on face 1 and their corresponding points on face 3. This inference is further verified by the longer arrival time delays at these measurement locations than those of location 1–3 and 9 in Fig. 15.

To present the acoustic measurements more quantitatively, we extracted the arrival time of S-wave signals measured on face 1 & 3 for each sample and calculated the wave velocity, seeing that S-wave is sensitive to fractures or gas gaps created on its transmission pathway. Note that the minimum horizontal stress or x-stress was exerted on face 1 & 3. Fig. 16 compares the S-wave velocity measured from face 1 & 3 of sample 1 before and after scCO2 injection-induced fracturing. Remarkably retarded velocity at location 3–8 and 10–12 indicates the creation of fracture planes between these locations on face 1 and their corresponding points on face 3. The velocity decrease at location 1, 2, 3, and 9 is caused by compressional damage of tri-axial stress loading and can be a reference for the other locations.

S-wave velocity values measured on face 1 & 3 for sample 2–5 before and after scCO2 injection-induced fracturing are compared in Figs. 17–20, respectively.

Based on the S-wave velocity, we identified the most probable measurement locations and their corresponding points where there are induced-fractures, as summarized in Table 2. Locations on face 1 with
3.4. Borehole pressure decay

After the scCO2 injection tests, the conductivity of induced fractures inside the concrete samples were quantified by borehole pressure decay tests. Under no confining stress, borehole pressure of the samples was raised to 180 psig by injecting nitrogen gas and then was allowed to decay naturally. The pressure decay curves of five samples are shown in Fig. 21, demonstrating high fracture conductivity or improved permeability as compared to the pre-injection decay curve, which is almost the same for all samples. Sample 1, 2, and 3 show a trend that as the minimum horizontal stress (x-stress) increases while maintaining the same stress difference, the conductivity of the induced fractures decreases, attributing to the increasing confinement of fracture propagation. In addition, by enlarging the stress difference, fracture conductivity of sample 5 rises in comparison with sample 2 and 4. Nonetheless, the fracture conductivity of sample 2 and 4 does not follow the same trend, as attributed to experimental uncertainty.

3.5. Induced fracture morphology

After the acoustic emission measurements and pressure decay tests, dye solution was injected into the concrete samples to color fractures induced by scCO2 injection. The injection pressure was set at 180 psig to avoid creating new fractures. Afterwards, the samples were broken down by injecting nitrogen gas under originally planned tri-axial stresses to reveal the colored scCO2 induced fractures.

The assembled six faces and the revealed fracture morphology of five concrete samples after dye coloring and gas fracturing are shown in Figs. 22–26, respectively. In the assembled faces, sample numbers are marked on face 1. Dark dots result from acoustic couplant. Small black arrows indicate the observable fractures after scCO2 injection, and blue color is dye solution that seeped out of induced fractures. On the gas fracture profiles of the broken samples, purple lines circle the scCO2 injection-induced fractures.

As shown in Fig. 22, blue dye solution seeped out of observable induced fractures propagated to face 2, 4, 5, and 6, showing a major scCO2 injection-induced fracture plane that is perpendicular to the minimum horizontal stress direction (x-axis). This major fracture plane that measures about 48 cm on sample faces is further revealed by the right subgraph of gas fracture planes, which were taken by unfolding the sample from face 2. Nitrogen gas fracturing of sample 1 reached a peak of 1298 psig under tri-axial stress loading. The colored area delineates the scCO2 injection-induced fracture planes that initiated from the uncased section of the borehole and propagated in a rugged manner to the block faces. In area, the induced fractures accounts for about 3/4 of the whole cross section. Comparison with the acoustic measurement locations shows that the induced fracture plane cut across location 4–8 and 10–12, without interfering with location 1–3 and 9. This observation agrees very well with the derivations from Figs. 14 and 15, demonstrating that active acoustic emission measurement is an effective method to detect existing fractures inside concrete blocks.

The scCO2 injection-induced fracture orientation and morphology in sample 2–5 are shown in Figs. 23–26, respectively. The major characteristics of scCO2 injection-induced fractures including length, smoothness, relative area, and orientation as well as the peak fracturing

<table>
<thead>
<tr>
<th>Concrete sample #</th>
<th>Locations with normal S-wave velocity</th>
<th>Locations with retarded S-wave velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-3, 9</td>
<td>4-8, 10-12</td>
</tr>
<tr>
<td>2</td>
<td>1, 3, 4, 9</td>
<td>2, 5-8, 10-12</td>
</tr>
<tr>
<td>3</td>
<td>1-3, 9, 12</td>
<td>4-8, 10, 11</td>
</tr>
<tr>
<td>4</td>
<td>1-12</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>1-2, 9-10</td>
<td>3-8, 11, 12</td>
</tr>
</tbody>
</table>
pressure during scCO\textsubscript{2} injection, responses on tri-axial stress at the peak fracturing point, locations with delayed acoustic signatures, and the peak pressure of nitrogen gas fracturing are summarized in Table 3 for illustration of the scCO\textsubscript{2} injection-induced fracturing process and corroboration of the experimental methods.

From the fracture morphology in Table 3, results of sample 1–3 show that as confining stress levels increase while stress difference remains constant, length of fractures reaching the block surface decreases and fracture development inside the sample shrank. When the stress difference increases while x-stress remains the same for sample 4, 2, and 5, the length of observed fractures on sample surface tends to first increase and then decrease, whereas the fracture planes developed inside the sample keeps increasing. Given higher confining stress levels and stress differences, the major induced fracture planes become much smoother and are perpendicular to the minimum horizontal stress direction, e.g. sample 3 and 5. On contrary, with low confining stress levels and differences, the fracture planes are more rugged and even branched, and are angular to the minimum horizontal stress direction. By reducing the stress difference to 312 psi for sample 4, the fracture growth does not seem to be dominated by the stress field at all.

In addition, for all five samples the induced fracture planes colored and revealed by nitrogen gas fracturing overlap well with the mapping of arrival time delays in acoustic waves, although the measurement locations chosen for acoustic emission are not sufficient to detect the boundary of the induced fractures. Moreover, induced fracture orientations are also directly reflected by the responses on tri-axial stress profiles during the scCO\textsubscript{2} injection experiments. Once there were big fractures initiating and propagating perpendicular to the minimum horizontal stress, a noticeable hump showed up on x-stress, e.g. sample 1, 3, and 5. Otherwise, no obvious changes could be seen on stress profiles, e.g. sample 2 and 4. Another noteworthy point is that, in Figs. 22–26, the outer uncolored fractures created by N\textsubscript{2} fracturing are obviously more wavy with much higher roughness than colored scCO\textsubscript{2} fractures, as a result of the lower N\textsubscript{2} viscosity. For example, viscosity of N\textsubscript{2} at 20.0 °C and 1500 psia is 19.77 μPa·s and that of scCO\textsubscript{2} at 40.0 °C and 1500 psia is 50.33 μPa·S (NIST, 2017). Lower viscosity enables fluids to penetrate or leak-off into localized pores or microfractures more easily, hence posing higher probability for major fractures to divert and branch off into these directions. This viscosity dependent fracture behavior has also been observed by Ishida et al. (2004) and Li et al. (2016).

3.6. Breakdown pressure analysis

The concrete sample broke down at the point the scCO\textsubscript{2} injection pressure reached the highest peak, i.e. the breakdown pressure. As reviewed at the beginning, the breakdown pressure of non-poroelastic
rocks can be predicted using Eq. (1) and that of poroelastic rocks can be predicted using Eq. (2). In these experiments, pore pressure is negligible, Biot’s constant α is taken as 0.70, and Poisson’s ratio ν is 0.24 for these concrete samples (Yao, 2016). Then by substituting the real triaxial stresses exerted on the samples when they were broken down and adjusting the tensile strength within the experimental measurement range into (2), the predicted breakdown pressure values are obtained, as scattered with the experimental data in Fig. 27. The tensile strength used in Eq. (1) for upper bound breakdown pressure calculation adopted the average value of 473 psi. Parameters used in Eq. (2) for matching the experimental data are listed in Table 4. The relative deviations of experimental data from predictions are within \pm 10%. It
is obvious that although these caprock-analogous concrete samples have very low average porosity and permeability (<10% and <10 Darcy), they are remarkably different from non-poroelastic rocks and showed much lower breakdown pressure in scCO₂ injection cases.

4. Conclusions

In-depth understanding of occurrence of CO₂ injection-induced fracturing are essential for robust CO₂ geological sequestration design and optimum operations. This study developed fundamental understandings of injection-induced geomechanical effects on supercritical CO₂ storage systems, including fracturing processes, fracture morphology, and breakdown pressure correlations by laboratory studies on caprock analogs. Based on the foregoing analyses of the scCO₂ injection experiments, the following conclusions can be drawn.

- Supercritical CO₂ injection-induced fracturing usually occurred and accomplished instantaneously in laboratory homogeneous caprock analogs, without showing recognizable fracture propagation stages. Induced fracturing is strongly controlled by the heterogeneities in the tri-axial stress conditions and is affected by low viscosity of scCO₂. Fractures generated are generally large, simple, and relatively smooth, and their planes are approximately perpendicular to the minimum horizontal stress, given high stress differences and stress levels. While at relatively low confining stresses with small stress differences, multiple small fractures branch off the borehole in arbitrary directions and fracture planes are rough. Nonetheless, in field implementations, fracture propagation is still expected to be quasi-static in terms of high surrounding pressure.

- Occurrence of breakdown or fracture initiation from borehole into rock matrix can be identified from the scCO₂ injection pressure profile, associating with temperature drop due to vaporization. Acoustic wave signatures provide a nondestructive means to map the domain of fractures generated in invisible rock samples. Dye coloring and gas fracturing visually revealed the morphology and boundary of induced fractures.

- Non-poroelastic mechanics model substantially overestimates the breakdown pressure of low porosity and low permeability concrete blocks when scCO₂ is the injected fluid, probably due to that scCO₂ has a low viscosity and therefore high leak-off rate. Provided additional parameters, the poroelastic mechanics model can satisfactorily match the experimental data.

- Low breakdown pressure, hardly to be trapped in micro-pores, and miscibility with hydrocarbons enable scCO₂ or liquid CO₂ as an advantageous fracturing fluid to water and oil based fracturing fluids in stimulating unconventional oil and gas reservoirs, especially considering that ultralight proppants are becoming indust-

<table>
<thead>
<tr>
<th>Sample number</th>
<th>ScCO₂ injection pressure, psig</th>
<th>Experimental data</th>
<th>Predicted by Eqn. (1)</th>
<th>Predicted by Eqn. (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1298</td>
<td>1298</td>
<td>Delayed at 4-8, 10-12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1600</td>
<td>1600</td>
<td>Delayed at 4-8, 10-12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1800</td>
<td>1800</td>
<td>Delayed at 4-8, 10-12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1900</td>
<td>1900</td>
<td>Delayed at 4-8, 10-12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>2000</td>
<td>Delayed at 4-8, 10-12</td>
<td></td>
</tr>
</tbody>
</table>
These laboratory experiments deepen our understandings of scCO2 injection-induced fracturing in reservoir caprocks, provide useful findings for assessing CO2 geologic storage reservoir conditions, and are instructive for enhancing the performance of life cycle storage operations. In particular, the calibrated poroelastic mechanics model can be incorporated into reservoir simulators that couple geomechanics (e.g. TOUGH2-CSM (Winterfeld et al., 2012) and TOUGH-FLAC (Rutqvist 2011)) to simulate field-scale CO2 injection-induced rock mechanical processes and ensure safe and permanent CO2 sequestration and storage in reservoirs. This will also enable us to quantify potential leakage pathways as well as to develop remediation measures when needed in these reservoirs. To upscale laboratory-scale scCO2 injection-induced fracturing findings to field-scale applications, more complex factors should be taken into account, for example, rock heterogeneity, existing natural fractures or faults, reservoir boundary conditions, etc. Thermal effects resulted from expansion of CO2 might play an important role as well.

Acknowledgements

The authors thank the financial support from National Energy Technology Laboratory of US Department of Energy (Quantitative Characterization of Impacts of Coupled Geomechanics and Flow on Safe and Permanent Geological Storage of CO2 in Fractured Aquifers, Project Number: DE-FE0023305) and Foundation CMG.

References

Tensile strength psi P b from eqn. (2) Pb from Exp. Dev.%

Table 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>tri-axial stresses x:y:z psi</th>
<th>Tensile strength psi</th>
<th>P b from eqn. (2)</th>
<th>P b from Exp.</th>
<th>Dev.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>940.5:1547.8:2215.5</td>
<td>386</td>
<td>1148.4</td>
<td>1091.5</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>1238.1:1881.2:2500.3</td>
<td>576</td>
<td>1514.9</td>
<td>1641.2</td>
<td>3.70</td>
</tr>
<tr>
<td>3</td>
<td>1492.1:2075.6:2742.0</td>
<td>576</td>
<td>1889.3</td>
<td>2130.2</td>
<td>8.85</td>
</tr>
<tr>
<td>4</td>
<td>1229.6:1558.0:1900.7</td>
<td>366</td>
<td>1711.8</td>
<td>1641.9</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>1269.9:2175.4:3107.3</td>
<td>356</td>
<td>1385.3</td>
<td>1195.5</td>
<td>8.63</td>
</tr>
</tbody>
</table>

Suehiro, Y., Nakajima, M., Yamada, K., Uematsu, M., 1996. Critical parameters of (xCO2 + (1–x) CH4) for (x = 1.000, 0.7496, 0.5013, and 0.2522). J. Chem. Thermodyn. 28 (10), 1153–1164.