A modeling study of perched water phenomena in the unsaturated zone at Yucca Mountain

Y.S. Wu *, A.C. Ritcey, G.S. Bodvarsson

Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Accepted 9 November 1998

Abstract

The purpose of this paper is to illustrate the use of a multiphase subsurface flow model to study perched water phenomena in vadose zones. Modeling studies are based on field investigations of the unsaturated zone (UZ) at Yucca Mountain, Nevada. Perched water data have been compiled, analyzed, and incorporated into a three-dimensional (3-D) UZ flow model developed to investigate perched water phenomena at Yucca Mountain. A conceptual model of perched water occurrences is discussed, and a series of comprehensive computer modeling studies on perched water at the site are presented. The model has been calibrated using perched water data observed in six boreholes, and reproduces water-perching conditions in the unsaturated zone of the mountain. Both steady-state and transient simulations have been conducted. The steady-state simulation results are in agreement with the observed perched water data, including water saturation and potential profiles and perched water elevations. Transient numerical pumping tests were performed using pumping testing data collected in the field from two boreholes. The numerical pumping test results match observed water levels collected during pumping and recovery periods. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Perched water; Vadose zone hydrology; Numerical modeling; Unsaturated flow; Fractured porous media; Yucca Mountain

1. Introduction

Considerable progress in vadose zone hydrology has been made in recent years due to the research in soil science and also as a result of environmental concerns over the uncontrolled release of hazardous compounds to the subsurface environment. Computer

* Corresponding author. Fax: +1-510-486-6115; e-mail: yswu@lbl.gov

0169-7722/99 - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0169-7722(99)00015-7
modeling studies of contaminant migration and remedial measures in the vadose zone have played a critical role in addressing these issues. The capabilities of flow and transport models have been improved tremendously, evolving from solving the basic Richard’s unsaturated flow equation to simulation of coupled processes of multi-phase, multi-component, and non-isothermal fluid flow and chemical transport. One of the new areas in vadose zone hydrology is the field of perched water studies. This area has recently received increased attention, particularly in the arid western United States, where thick unsaturated zones and highly heterogeneous, fractured rock can lead to the development of significant perched water zones. One such site, located at Yucca Mountain, Nevada, is currently under consideration by the US Department of Energy as a potential site for the storage of high level radioactive waste.

Since the middle 1980s, the US Department of Energy has pursued a program of site characterization studies designed to explore the geological, hydrological, and geothermal conditions in the unsaturated and saturated zones of the mountain. The unsaturated zone at Yucca Mountain varies between about 500 and 700 m in thickness, depending on local topography. The potential repository would be located in the highly fractured Topopah Spring welded unit (TSw), about 300 m above the water table. During field investigations, several perched water zones have been encountered (Burger and Scofield, 1994; Striffler et al., 1996; Rousseau et al., 1998). The presence of perched water bodies within Yucca Mountain has important implications for travel times and flow paths of water through the unsaturated zone, and could pose potential problems for the construction, operation, and performance of the repository. Thus, it is necessary to investigate perched water and its implications in order to understand the unsaturated zone hydraulic system at Yucca Mountain.

There exist few experimental or field studies on the perched water phenomena in unsaturated fractured rocks in the literature, although numerical modeling studies were reported in unsaturated layered soils (Kirkland et al., 1992; Forsyth et al., 1995). This may be due to the fact that unsaturated zone hydrology, in particular for fractured rocks, is still under development. However, several conceptual models of perched water occurring at Yucca Mountain have been presented (Montazer and Wilson, 1984; Hoxie, 1989; Rousseau et al., 1998). Some theoretical analyses were also conducted to predict perched volumes using a 2-D numerical model (Hinds et al., 1997). A detailed numerical study of on the perched water dynamics at Yucca Mountain was carried out by Hinds (1997) to examine sensitivity and effects of rock properties, climate and faults on the formation of perched water.

Perched water may be defined as a saturated zone that is above or not directly connected to the static water table (Freeze and Cherry, 1979). Two conditions should be satisfied for a perched water body to exist in a vadose zone of fractured media. The first is that liquid saturation within a perching zone must be sufficiently high to initiate fracture flow (assuming that fractures are present), and secondly, the water-phase pressure within the perched zone must be equal to or greater than static atmospheric gas pressure at the same elevation. Under these conditions, water will flow freely from a borehole or tunnel that intersects a perched water body.

Perched water may accumulate where adjacent formation units have disparate hydraulic conductivities such as when water migrating downward through a more perme-
able rock reaches a much less permeable rock through which flow paths are limited. It may occur in a permeable layer overlaying a relatively impermeable layer, or in a well-connected fractured unit overlaying a locally unfractured or poorly connected fractured unit. Perched water may also form along a dipping, low-permeability layer that is adjacent to a fault that acts as a capillary barrier to downdip water flow.

The presence of perched water bodies in the vicinity of the potential repository at Yucca Mountain has many implications, and at the same time it may provide invaluable insights into water movement, flow pathways, or surface infiltration history of the mountain. First, it implies that water particles may not travel vertically through the unsaturated zone to the water table directly, but has somehow been trapped or diverted laterally. As a result, non-uniform recharge rates are expected at the water table. Another concern is that perched zones may divert water around low-permeability zeolitic layers, a lower formation unit, underlying the potential repository horizon. By-passing of these units, which are thought to have substantial capacity to retard radionuclide transport, could have important implications for the capability of the geologic system to mitigate radionuclide releases to the environment. In addition, a perched body, if close to the repository, may affect thermo-hydrological conditions at the repository during thermal loading from decayed heat of high level radioactive nuclear wastes.

In this study, we have conducted a series of 3-D modeling simulations using the TOUGH2 code (Pruess, 1991) and available perched water data from six boreholes (UZ-14, SD-9, NRG-7a, G-2, SD-9, and SD-12). These modeling studies are designed to investigate the perched water occurrences at the Yucca Mountain site. In these simulations, both the effective continuum method (ECM) and the more rigorous dual-permeability conceptualization have been used to account for fracture and matrix interactions (Pruess et al., 1990a,b; Wu et al., 1996a). As indicated by residence times derived from geochemical data (Yang et al., 1996), perched water bodies at Yucca Mountain may have existed for thousands of years, and are currently present under steady-state or quasi steady-state conditions. Under such conditions, the ECM will provide a reasonable approximation for fracture/matrix interactions (Wu et al., 1996b; Doughty and Bodvarsson, 1996, 1997 and this issue).

A spatially varying surface infiltration map (Flint et al., 1996) is used to describe areally distributed net infiltration at the land surface. Perched water data observed in the field were used to calibrate the model in terms of matrix and fracture permeabilities, capillary functions, and relative permeabilities within the perched zones. Calibrated parameter values were within the range of field and laboratory measurements. The steady-state simulation results are in agreement with the observed perched water data in terms of water saturation and perched water locations. Furthermore, the simulation results of a transient numerical pumping test using a 3-D submodel matched water level data observed during field pumping tests.

2. Perched water data

Perched water has been intersected in a number of boreholes (UZ-14, NRG-7a, SD-9, and G-2), in the UZ at Yucca Mountain (Striffler et al., 1996). Perched water was also
found at borehole SD-7 (Yang et al., 1996; O’Brien, 1997) and USGS (Soeder, 1995), and wet core was recovered from borehole SD-12 (Patterson, 1996). For Borehole G-2, the perched water observation may be related to the regional water table, as speculated by some investigators at the site. The evidence of water perching at SD-12 was observed from downhole TV logging and the actual location was uncertain. In addition to the perched water information, the measured liquid saturation and water potential profiles available for the selected boreholes were used for comparisons with model simulation results.

The locations of the boreholes are shown in Fig. 1; borehole coordinates and related perching information are listed in Table 1. Detailed descriptions of the boreholes and associated perched water data are presented below.

Fig. 1. Locations of boreholes with perched water occurrences and a plan view of site-scale model domain, showing model boundary, grid, and major faults.
Table 1
Borehole location and perched water occurrence

<table>
<thead>
<tr>
<th>Boreholes</th>
<th>Nevada coordinates(^a)</th>
<th>Surface elevation(^b) (masl)</th>
<th>Total depth(^b) (m)</th>
<th>Top of perched zone(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North (m)</td>
<td>East (m)</td>
<td></td>
<td>Elevation (masl)</td>
</tr>
<tr>
<td>UZ-14</td>
<td>235,095</td>
<td>170,731</td>
<td>1348</td>
<td>678</td>
</tr>
<tr>
<td>NRG-7a</td>
<td>234,355</td>
<td>171,598</td>
<td>1282</td>
<td>461</td>
</tr>
<tr>
<td>SD-7</td>
<td>231,328</td>
<td>171,066</td>
<td>1362(^c)</td>
<td>815(^d)</td>
</tr>
<tr>
<td>SD-9</td>
<td>234,086</td>
<td>171,242</td>
<td>1302(^d)</td>
<td>663</td>
</tr>
<tr>
<td>SD-12</td>
<td>232,244</td>
<td>171,178</td>
<td>1324(^e)</td>
<td>660(^e)</td>
</tr>
<tr>
<td>G-2</td>
<td>237,386</td>
<td>170,842</td>
<td>1554(^f)</td>
<td>558(^f)</td>
</tr>
</tbody>
</table>

\(^a\)EG&G, 1994, site atlas.
\(^b\)Rousseau et al., 1998.
\(^c\)Rautman and Engstrom, 1996a.
\(^d\)Engstrom and Rautman, 1996.
\(^e\)Rautman and Engstrom, 1996b.
\(^g\)Clayton, 1998.
\(^h\)Patterson, 1996.

2.1. Borehole UZ-14

Borehole UZ-14 is located in the Drill Hole Wash, near the northern end of the potential repository (Fig. 1). The surface elevation of the borehole is 1348 m and total depth is 678 m. Perched water was encountered during drilling at a depth of about 381 m, near the contact with the basal vitrophyre of the Topopah Spring Tuff. Several pumping tests were conducted on the perched water zone in this borehole (Burger and Scofield, 1994; Striffler et al., 1996). Drawdown from these tests recovered completely after 5.6 days, suggesting that an extensive perched water body may exist in this area (Czarnecki, 1995).

2.2. Borehole NRG-7a

Borehole NRG-7a is also located in Drill Hole Wash, with a surface elevation of 1282 m. The borehole was drilled to a total depth of 461 m into the top of the Calico Hills formation. Perched water was reached at 428 m depth, within a series of highly fractured welded tuffs overlying relatively unfractured, non-welded tuffs.

2.3. Borehole SD-9

Borehole SD-9 is located adjacent to Drill Hole Wash, with a surface elevation of 1302 m and a total depth of 663 m. Perched water was intersected at a depth of 413 m, about 3 m above the lower non-lithophysal/vitrophyre contact in the Topopah Spring.
Tuff, and about 157 m above the water table. The perched water zone was located in highly fractured, welded tuff underlain by less-fractured, non-welded tuff.

2.4. Borehole SD-7

The perched water in SD-7 was found in the bottom portion of the Calico Hills zeolitic unit at an elevation of 880 m, or about 150 m above the regional water (Soeder, 1995; O’Brien, 1998). Analysis of hydraulic testing indicates that the volume of the perched water body volume is small (about 96,000 l), because the water level did not recover to the pre-pumping levels after testing (Luckey, 1995).

2.5. Borehole SD-12

According to Patterson (1996), the surface barometric signal is attenuated within and below the crystal-poor vitric zone, indicating that a perched or saturated water zone probably exists at this location. Perched water was detected at an elevation of 926 m (Patterson, 1996). The stratigraphic location of perched water at the contact between the crystal-poor non-lithophysal zone and the crystal poor vitric zone is consistent with the location of perched water found in other North Ramp boreholes (Patterson, 1996). Borehole TV camera reveals the presence of free water on the borehole wall with the upper part of the vitrophyre (Kwicklis, 1998). Rautman and Engstrom (1996b) show this interval to be saturated or nearly so.

2.6. Borehole G-2

Borehole G-2 is located at the northern end of Yucca Mountain (Fig. 1). The borehole has a surface elevation of 1554 m and extends to a total depth of 1891 m below land surface (M&O, 1995). In 1981, a composite water level (Czarnecki et al., 1994) was detected at an elevation of 1032 m, and since then the water level has declined by approximately 12 m to an elevation of about 1020 m (Craig, 1995). Although several hypotheses exist, water level data suggest the presence of a perched or semi-perched water body that may contribute to the composite water level.

2.7. Perched water geochemistry

Chemical data from the perched water and matrix pore waters of the unsaturated zone was collected at Yucca Mountain and has been used to estimate perched water ages (Yang et al., 1996). There exist a wide range of chemical data, reversals in pore waters from boreholes at depth, high values of 14C in pore-water in the Calico Hills Formation, and chemical disequilibrium (e.g., chloride) between perched water and pore-water. This indicates that fast flow with little interaction with matrix pore waters is the main source of perched water. Rapid transport through the PTn and into the TSw unit is supported by evidence of bomb-pulse 36Cl in the exploratory study facility (ESF), an underground tunnel at Yucca Mountain (Fabryka-Martin et al., 1996). Furthermore, δD and δ^{18}O values show that perched water has undergone very little evaporation before infiltration.
and is slightly heavier than saturated zone water (Yang et al., 1996). These chemical
data provide invaluable information for water travel times and pathways to the perched
water body (Wu et al., 1997b).

A full interpretation of the available water chemistry requires an assessment of
possible water–rock interaction, including interaction with the surface alluvium and
calcretes, the tuff matrix, high-temperature fracture coatings, and secondary mineraliza-
tion. In terms of understanding the geochemical behavior of the unsaturated zone at
Yucca Mountain, chlorine is the simplest element to study because it is not incorporated
in any minerals of volumetric importance and its abundance in unaltered tuffs is quite
low (Sonnenthal and Bodvarsson, 1999). Therefore, an understanding of the chloride
balance in the mountain can be used to constrain flow, transport, and mixing phenomena
in Yucca Mountain as a precursor to modeling much more complex systems involving
reactions between rock, water and gas. 14C data indicate that perched water ages range
from 3500 to 11,000 years accounting for caliche dissolution as indicated by δ^{13}C data
(Yang et al., 1996). δ^{18}O data also support perched water residence times of less than
8000 years (Yang et al., 1996). According to Yang et al. (1996), differences in chloride
concentrations between water sampled from boreholes during pumping tests and pore
water extracted from the rock matrix show that recharge probably arrives to a perched
body through fractures.

3. Development of the perched water model

3.1. Conceptual model

Perched water may occur where percolation flux exceeds the capacity of the geologic
media to transmit flux in unsaturated zones. At Yucca Mountain, perched water is
believed to be a local phenomenon in the unsaturated zone, created by heterogeneity and
geologic structures within the fractured and unfractured tuffs. Perched water develop-
ment is also dependent on sufficient recharge from the ground surface. To simulate and
predict perched water zones at the site accurately, more site-specific data, such as the
spatial distribution of fracture and matrix properties, formation layering information, and
fault properties and distributions, are needed. Detailed modeling studies or predictions of
perched water at Yucca Mountain are currently limited by uncertainties in hydrogeologi-
cal information, observation data at perched water zones, and by the intensive computa-
tional requirements of refined 3-D grids.

The conceptual model for perched water zones in this study is based on the 3-D
site-scale unsaturated-zone flow model (Wu et al., 1996b, 1997a) and the associated
geological model (Bandurraga, 1996). The perched water bodies in the area of the North
Ramp (near Boreholes UZ-14, SD-9, NRG-7a and G-2, Fig. 1) were assumed to lie
along the base of the TSw, a zone of altered, more intensely fractured rock, underlain by
a very low permeability zeolitic layer. In addition, the perched water zones at SD-7 and
SD-12 were considered as localized bodies. Lateral water movement in the vicinity of
the perched zones was investigated subject to the following assumptions: (1) no
large-scale vertically connected fractures transect the underlying low-permeability units,
and (2) both vertical and horizontal permeabilities within and below the perched water zone are small when compared with measurements outside perching zones. This conceptual model emphasizes a permeability-barrier effect.

3.2. Model domain and grid

The 3-D model domain and grid used in this study are also shown in plan view in Fig. 1. The total surface area covered by the model is approximately 43 km²; each horizontal grid layer represents a discretized formation layer using 1470 irregular integral finite difference gridblocks. The total number of element blocks in the grid is about 40,000 for the ECM model and 80,000 for the dual-permeability model. The grid is designed with increased resolution in the vicinity of the proposed repository, located at the center of the model domain. The model domain (Fig. 1) was selected to focus the study at and near the potential repository area and to investigate perched water occurrences near the northern part of the potential repository. All laterally surrounding boundaries are located sufficiently far from the repository so that their effects on simulation results at the repository are small.

Vertically, the layering and subdivision of geological units in the numerical grid are based on the geological model of Bandurraga 1996. The 3-D model grid has 28 computational grid layers that represent different hydrogeological units or portions of units in the unsaturated zone of Yucca Mountain. From top down, these units are: the Tiva Canyon unit (TCw), vertically subdivided into three layers (may be eroded and not present in some locations), the Paintbrush unit (PTn), represented using five grid layers (similar to the TCw, several layers are eroded and may be missing in certain areas of the model). Below the PTn is the Topopah Spring welded unit (TSw), divided into seven sublayers with three additional computational grid layers used within the potential repository boundary. The Calico Hills (CHn) unit underlies the TSw, and has a maximum of eight sublayers, representing vitric or zeolitic facies. However, in order to refine the mesh within the CHn hydrogeologic unit, two more locally refined layers were added. The bottom boundary of the model is at the water table.

As shown in Fig. 1, several major faults are incorporated explicitly in the model, including the Solitario Canyon, Iron Ridge, Ghost Dance/Abandoned Wash, and Dune Wash faults. Some of these faults are not labeled on the figure. The Bow Ridge fault is treated as the eastern boundary of the model domain. Based on field evidence indicating that the fault zones are predominantly vertical or near vertical at Yucca Mountain, the faults are represented in the model as vertical zones of finite thickness bounded by sudden stratigraphic offsets in connections to adjacent gridlayers. The scheme used for generating the fault grid elements was outlined by Wittwer et al. (1995).

3.3. Numerical code and modeling approach

The simulation results presented were carried out using the TOUGH2 code (Pruess, 1991), a general-purpose reservoir simulator that simulates multi-dimensional coupled fluid and heat flow of multiphase, multi-component fluid mixtures in porous and
fractured media. The numerical approach in TOUGH2 is based on the integral finite difference method (Narasimhan and Witherspoon, 1976). The integral finite difference discretization does not make any reference to a global system of coordinates, and thus offers the advantage of being applicable to regular and irregular geometries of gridding in one, two or three dimensions. The method also provides a means of simple preprocessing of geometric data, to implement different methods for treatment of flow in fractured porous media. In the TOUGH2 formulation, time is discretized fully implicitly using a first-order backward finite difference scheme. The resulting discretized finite difference equations for mass and energy balances are non-linear, and are solved simultaneously using the Newton-Raphson iteration scheme.

The numerical modeling approaches used in this study for treatment of fracture/matrix interflow are the dual-permeability model (Pruess, 1991) and a generalized ECM (Pruess et al., 1990a,b; Wu et al., 1996a). The dual-permeability approach conceptualizes fractures and matrix as two separate, overlapping continua and treats interactions rigorously. The generalized ECM accommodates two-phase flow in a fracture/matrix system, based on the assumption of local thermodynamic equilibrium between fracture and matrix. Compared to the more rigorous, computationally intensive, dual-permeability model, the ECM generates almost identical results for moisture flow at Yucca Mountain in both 1-D (Doughty and Bodvarsson, 1996, 1997 and this issue) and 3-D (Wu et al., 1996b) simulations under steady-state flow conditions. The ECM, when applicable, provides a substantial simplification in the description of fluid and heat flow in fractured porous media. Favorable conditions for this method are when matrix blocks are relatively small and permeable, and the fracture network is relatively uniformly distributed. The effective-continuum approximation may break down under certain unfavorable conditions, such as during rapid transient flow through tight, large and low permeability rock matrix blocks surrounding fractures when a long time is required to reach local equilibrium under such conditions (Wu and Pruess, 1988).

3.4. Boundary conditions and model parameters

The land surface of the mountain (or the tuff/alluvium contact, in areas of significant alluvial cover) is taken as the top model boundary. The water table is treated as the bottom boundary. Both top and bottom boundaries of the models are treated as Dirichlet-type conditions, with specified constant (but areally distributed) gas pressures and constant liquid saturation. Constant temperatures used for the boundaries are determined based on field observation (Wu et al., 1996b). Gas pressures for each element of the bottom boundaries are calculated using observed gas pressures corrected to the elevation of boundary block. Surface gas pressures are obtained by running TOUGH2 to steady-state conditions under given temperature and bottom pressure conditions.

A spatially distributed infiltration map (Flint et al., 1996), shown in Fig. 2, is used as the top water recharge boundary of the 3-D model, which is added to the second grid layer from top as source terms. This map uses an average net infiltration rate of 4.9 mm/yr of water distributed over the site-scale model domain. Areas of higher infiltra-
Fig. 2. Net infiltration map showing the distribution of net infiltration over Yucca Mountain (modified from Flint et al., 1996).

Net infiltration rates are located in the northern part of the model domain and along the south–north ridge of the mountain. Lower infiltration rates dominate in the eastern part of the model domain near the Bow Ridge fault, and near the south–west corner of the model area.
Thermophysical properties of liquid water, air and vapor in the TOUGH2 code are internally generated within experimental accuracy from steam table equations (International Formulation Committee, 1967). Air is treated as an ideal gas and additivity of partial pressures is assumed for air/vapor mixtures.

Properties for rock matrix and fractures were estimated by inverse modeling using the ITOUGH2 code (Finsterle, 1993), based on observed saturation and water potential data from site boreholes. The methodology and procedure of the parameter estimation were discussed by Bandurraga and Bodvarsson (1997) and Bandurraga et al. (1996) however, permeabilities and capillary pressures for the perched zones were calibrated as discussed below. The rock properties of matrix and fractures used in the ECM model are listed in Table 2. All geological units are treated as fracture/matrix systems, except for the PTn, in which fracture flow effects are ignored.

In Table 2, \(k_m \) and \(k_f \) are saturated matrix and fracture continuum permeabilities, \(\alpha_m \) and \(\alpha_f \) are van Genuchten’s parameters (van Genuchten, 1980) of capillary pressure of matrix and fracture, respectively, and \(m_m \) and \(m_f \) are van Genuchten’s parameters of relative permeabilities.

Table 2

The rock properties of matrix and fractures for perched water studies

<table>
<thead>
<tr>
<th>Unit/layer</th>
<th>(k_m) (m(^2))</th>
<th>(k_f) (m(^2))</th>
<th>(\alpha_m) (Pa(^{-1}))</th>
<th>(\alpha_f) (Pa(^{-1}))</th>
<th>(m_m)</th>
<th>(m_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcw11</td>
<td>0.160E−18</td>
<td>0.123E−10</td>
<td>0.366E−05</td>
<td>0.154E−03</td>
<td>0.206</td>
<td>0.195</td>
</tr>
<tr>
<td>tcw12</td>
<td>0.963E−17</td>
<td>0.575E−11</td>
<td>0.126E−05</td>
<td>0.123E−02</td>
<td>0.250</td>
<td>0.231</td>
</tr>
<tr>
<td>tcw13</td>
<td>0.220E−16</td>
<td>0.575E−11</td>
<td>0.324E−06</td>
<td>0.123E−02</td>
<td>0.418</td>
<td>0.437</td>
</tr>
<tr>
<td>ptn21</td>
<td>0.400E−12</td>
<td>n/a</td>
<td>0.230E−04</td>
<td>n/a</td>
<td>0.222</td>
<td>n/a</td>
</tr>
<tr>
<td>ptn22</td>
<td>0.240E−12</td>
<td>n/a</td>
<td>0.542E−05</td>
<td>n/a</td>
<td>0.310</td>
<td>n/a</td>
</tr>
<tr>
<td>ptn23</td>
<td>0.182E−12</td>
<td>n/a</td>
<td>0.548E−04</td>
<td>n/a</td>
<td>0.280</td>
<td>n/a</td>
</tr>
<tr>
<td>ptn24</td>
<td>0.130E−12</td>
<td>n/a</td>
<td>0.162E−04</td>
<td>n/a</td>
<td>0.370</td>
<td>n/a</td>
</tr>
<tr>
<td>ptn25</td>
<td>0.615E−12</td>
<td>n/a</td>
<td>0.165E−03</td>
<td>n/a</td>
<td>0.319</td>
<td>n/a</td>
</tr>
<tr>
<td>tsw31</td>
<td>0.105E−13</td>
<td>0.400E−11</td>
<td>0.582E−05</td>
<td>0.122E−02</td>
<td>0.242</td>
<td>0.203</td>
</tr>
<tr>
<td>tsw32</td>
<td>0.170E−15</td>
<td>0.139E−10</td>
<td>0.183E−04</td>
<td>0.379E−04</td>
<td>0.236</td>
<td>0.247</td>
</tr>
<tr>
<td>tsw33</td>
<td>0.200E−16</td>
<td>0.710E−11</td>
<td>0.656E−05</td>
<td>0.202E−03</td>
<td>0.248</td>
<td>0.238</td>
</tr>
<tr>
<td>tsw34</td>
<td>0.340E−16</td>
<td>0.100E−10</td>
<td>0.715E−06</td>
<td>0.544E−04</td>
<td>0.334</td>
<td>0.286</td>
</tr>
<tr>
<td>tsw35</td>
<td>0.244E−15</td>
<td>0.400E−11</td>
<td>0.243E−05</td>
<td>0.122E−02</td>
<td>0.250</td>
<td>0.227</td>
</tr>
<tr>
<td>tsw36</td>
<td>0.382E−15</td>
<td>0.400E−11</td>
<td>0.571E−06</td>
<td>0.122E−02</td>
<td>0.418</td>
<td>0.416</td>
</tr>
<tr>
<td>tsw37</td>
<td>0.608E−16</td>
<td>0.400E−11</td>
<td>0.336E−06</td>
<td>0.122E−02</td>
<td>0.372</td>
<td>0.368</td>
</tr>
<tr>
<td>ch1vc</td>
<td>0.160E−11</td>
<td>0.723E−12</td>
<td>0.904E−04</td>
<td>0.122E−02</td>
<td>0.221</td>
<td>0.227</td>
</tr>
<tr>
<td>ch2vc</td>
<td>0.550E−13</td>
<td>0.723E−12</td>
<td>0.980E−04</td>
<td>0.122E−02</td>
<td>0.227</td>
<td>0.227</td>
</tr>
<tr>
<td>ch3vc</td>
<td>0.550E−13</td>
<td>0.723E−12</td>
<td>0.980E−04</td>
<td>0.122E−02</td>
<td>0.227</td>
<td>0.227</td>
</tr>
<tr>
<td>ch4vc</td>
<td>0.550E−13</td>
<td>0.723E−12</td>
<td>0.980E−04</td>
<td>0.122E−02</td>
<td>0.227</td>
<td>0.227</td>
</tr>
<tr>
<td>ch1zc</td>
<td>0.540E−15</td>
<td>0.100E−12</td>
<td>0.190E−06</td>
<td>0.730E−03</td>
<td>0.359</td>
<td>0.359</td>
</tr>
<tr>
<td>ch2zc</td>
<td>0.450E−17</td>
<td>0.100E−12</td>
<td>0.421E−05</td>
<td>0.516E−03</td>
<td>0.228</td>
<td>0.225</td>
</tr>
<tr>
<td>ch3zc</td>
<td>0.450E−17</td>
<td>0.100E−12</td>
<td>0.421E−05</td>
<td>0.516E−03</td>
<td>0.228</td>
<td>0.225</td>
</tr>
<tr>
<td>ch4zc</td>
<td>0.840E−17</td>
<td>0.100E−12</td>
<td>0.150E−06</td>
<td>0.730E−03</td>
<td>0.476</td>
<td>0.476</td>
</tr>
<tr>
<td>pp3vp</td>
<td>0.602E−15</td>
<td>0.300E−13</td>
<td>0.203E−04</td>
<td>0.122E−02</td>
<td>0.347</td>
<td>0.313</td>
</tr>
<tr>
<td>pp2vp</td>
<td>0.170E−16</td>
<td>0.100E−12</td>
<td>0.179E−05</td>
<td>0.730E−03</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>bf3vb</td>
<td>0.602E−15</td>
<td>0.300E−13</td>
<td>0.203E−04</td>
<td>0.122E−02</td>
<td>0.347</td>
<td>0.313</td>
</tr>
<tr>
<td>bf2zb</td>
<td>0.170E−16</td>
<td>0.100E−12</td>
<td>0.179E−05</td>
<td>0.730E−03</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>tm3vt</td>
<td>0.602E−15</td>
<td>0.300E−13</td>
<td>0.203E−04</td>
<td>0.122E−02</td>
<td>0.347</td>
<td>0.313</td>
</tr>
</tbody>
</table>
Uniform fault properties (Wu et al., 1997b) were specified for all the explicitly incorporated faults, as shown in Fig. 1. A matrix permeability of 100 md (millidarcy) was used for faults, and horizontal and vertical permeabilities for fractures within fault zones were taken as 10 and 100 d, respectively. For fault zones, \(\alpha_m = 0.61E^{-4} \) (Pa\(^{-1}\)), \(\alpha_r = 1.0E^{-3} \) (Pa\(^{-1}\)), \(m_m = 0.5 \), and \(m_r = 0.5 \).

4. Results and analyses

4.1. Model representation of perched water bodies

The basic feature of a perched water body is that there exists a high water content or saturation region in a vadose zone, and the porous and fractured rock within this zone is fully or almost fully saturated. Substantial fracture flow may be initiated if a perching zone is in a fractured unit. The capillary forces, or water potentials, become very small, or even positive under fully saturated conditions. Water perching conditions may also be established under certain two-phase conditions when there exists a residual or trapped gas saturation. In this case, the system may never become completely liquid saturated, and the local capillary pressures, or pressure heads, are always negative. However, as liquid content builds up and the air phase becomes trapped, isolated, and immobile, both water and gas pressures increase locally. Once the local water pressure reaches a threshold value, such as the static atmospheric gas pressure at the location if no perched water exists, water will seep out from the fractures or pores if a borehole or tunnel intersects this zone. From a modeling point of view, a perched water zone may be established when water saturation is high enough and capillarity is sufficiently small, and a sufficient condition of water perching is that there exists a positive pressure head.

In our 3-D model, each borehole intersecting a perched water zone was represented using the corresponding rock columns from the 3-D site-scale model grid. The 3-D simulation results were analyzed in terms of saturation and water potential profiles to facilitate direction comparisons with measured data. Also, 3-D model results were displayed using two 2-D vertical cross-sections. The locations of the two cross-sections are shown in Fig. 1. Cross-section E–E’ is a north–south cross-section, crossing SD-7, SD-12 and SD-9, NRG-7a and G-2, and the west–east cross-section, C–C’, intersects UZ-14.

4.2. Comparisons with observed borehole data

As a first step for perched water calibrations of the flow model, observed saturations and perched water locations were compared with the dual-permeability model predictions. Figs. 3–8 show comparisons of the simulated and observed saturation profiles and perching locations for Boreholes UZ-14, NRG-7a, SD-7, SD-9, SD-12 and G-2. As shown in these figures, the observed saturation values are selected from available measured data (OCRWM/DOE, 1995). The simulation results are generally in good
agreement with both measured saturation profiles and water perching locations of these boreholes.

Fig. 3 shows comparisons of the simulated and observed saturations for Borehole UZ-14, indicating a reasonable agreement. An especially good correlation exists for saturations at all depths. At the perched water location of about 960 m elevation, the simulation results show that water saturation is 1, and water pressure is greater than atmospheric pressure at the location. This implies that perched water conditions are created in this case by the model, and also that the simulated results match the perched water elevation as shown in the figure.

Fig. 4 shows the simulation results for the NRG-7a borehole, indicating that the simulated water saturation profile matches the observed profile in the upper part of the borehole data, but is not in very good agreement with the observed values in the lower portion. The simulated saturation profile is a little ‘wetter’ than observed data in the lower part of the TSw unit. This may be due to the quality of the measured data, because the sample cores taken from the borehole were not handled properly, and some moisture may have been lost (Flint, 1996). The predicted perched water elevation agrees well with the observation.
Fig. 4. Comparisons of the simulated and observed saturations and perched water locations for borehole NRG-7a.

Figs. 5–7 give the results for Boreholes SD-7, SD-9, and SD-12. The comparisons of the simulated and observed saturations and perching locations are all reasonable. For all the three cases, the perched water locations are reproduced well by the 3-D model. Fully saturated condition and zero water potentials are obtained in the simulation results at the perched water levels for these boreholes. Fig. 8 shows only the simulation results for Borehole G-2, because no measurements for Borehole G-2 are available. The comparisons of the simulated and observed perched water locations are in good agreement. There is a very thick zeolitic layer at this location and a very thick (~ 100 m) perched water zone is predicted by the model. However, this thick saturated layer is above an unsaturated zone at this location (Fig. 8).

In order to calibrate the 3-D, UZ site-scale model against observed perched water-conditions at Yucca Mountain, some local modification of rock properties was required. In general, permeability was adjusted only within the model layers associated with the perching zone. Conceptually, in order for perched water to form, either a capillary and/or a permeability barrier condition must exist. For example, when a fine-grained material overlies a coarse grained material, a capillary barrier exists that prevents water from entering the coarse grained material, because the capillary pressure gradient
between the two grid layers tends to move water upward. Also the coarse grained material has a small relative permeability, which may be too low to allow all the water pass through. On the other hand, a permeability barrier exists where higher permeability material overlies a lower permeability material. In this case, the percolation flux from the high permeability zone may be higher than the transmission capacity of the underlying material, and water accumulation or lateral diversion will occur.

At Yucca Mountain, a common example of perching due to a permeability barrier is where the highly fractured basal vitrophyre of the TSw unit overlies the underlying bedded units of low permeability. In addition to a capillary or permeability barrier, two other conditions are required for perched water to exist: certain lateral confinement and sufficient percolation flux. Water diverted laterally may be confined due to an offsetting bed, mineralization, fault gouge, or capillary barrier effects associated with a fault or laterally confining permeability. In this study, fracture and matrix permeabilities were both reduced to investigate how low vertical and lateral confinement permeabilities must be in order to generate perched water under various infiltration scenarios. This change is consistent with evidence that suggests that fracture walls can be altered to low permeability minerals which then block flow along fractures (Rousseau et al., 1998) and

Fig. 5. Comparisons of the simulated and observed saturations and perched water locations for borehole SD-7.
that fracture connectivity and density varies drastically at geologic units with perched water (Burger and Scofield, 1994). Nevertheless, all the adjusted matrix permeabilities made in this study were within the ranges of observed and/or laboratory measured values.

For the perched water zone connecting and surrounding Boreholes UZ-14, SD-9, NRG-7a, and G-2, fracture and matrix rock properties in grid layers, tsw37, ch1zc, and ch2zc were adjusted and renamed as pch37, pch1z and pch2z. The layers corresponding to the bottom of the TSw and the two upper layers of the CHn, respectively. To calibrate against the perched water body at SD-7, model layers ch3zc and ch4zc were adjusted, and at SD-12, model layers ch2vc, ch3zc and ch4zc were adjusted. These layers were renamed as pch2z, pch3z and pch4z, respectively. Table 3 shows the adjusted rock parameters used in the model.

In Table 3, \(S_R \) is residual gas saturation and \(S_{sw} \) is satiated liquid saturation. As shown in Table 3, the other important modification to the rock properties in the perched water zone is the introduction of residual gas and satiated saturation mechanisms to account for the trapped air phenomena in the rock matrix. Under such conditions, gas phase becomes immobile and capillary pressure reduces to very small or zero for gas saturation below its residual value.
4.3. Simulated perched water bodies

Figs. 3–8 show only the observed and simulated perched water elevations vertically. Simulated perched water bodies and their extensions will be discussed using 2-D and 3-D plots. The 2-D plots display results extracted from outputs from 3-D dual-permeability simulations.

Fig. 9 is a plan view of a 3-D plot, showing water saturation contours along the top of the CHn zeolitic unit, at an elevation of 900 m. It clearly indicates that an extensive perched water body in the northern part of the model domain, which surrounds Boreholes UZ-14, SD-9, NRG-7a, and G-2. Fig. 9 also shows very low saturations along the major faults, because of higher permeability and low capillary suction forces in the fault zones.

Vertical profiles of the perched water bodies can be seen from the two vertical cross-sections (Fig. 1). Fig. 10 shows the water saturation distributions along the north–south (E–E') cross-section. As displayed on this figure, an extensive water body exists along the north–south direction from G-2. The simulated perched water body agrees with the observed perched water locations at SD-7, SD-12, SD-9 and G-2 in the
cross-section, as indicated on the figure. However, the perched water bodies for SD-7 and SD-12 are small, and not hydraulically connected with the perched water in the northern part of the mountain.

Along the west–east cross-section (C–C'), shown in Fig. 1, the simulated perched water profiles are also in good agreement with the observed perched water elevations from Borehole UZ-14 (Fig. 11). The figure shows a lower, vertical saturation zone along the Salitario Canyon Fault, west to UZ-14.

Table 3
Calibrated fracture/matrix rock properties used for perched water studies in the vicinity of UZ-14, SD-9, NRG-7a and G-2, SD-7, and SD-12

<table>
<thead>
<tr>
<th>Units</th>
<th>k_m (m2)</th>
<th>k_f (m2)</th>
<th>α_m (Pa$^{-1}$)</th>
<th>α_f (Pa$^{-1}$)</th>
<th>m_m</th>
<th>m_f</th>
<th>S_{gr}</th>
<th>S_{hw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pch37</td>
<td>0.608E−17</td>
<td>0.304E−17</td>
<td>0.336E−6</td>
<td>0.336E−6</td>
<td>0.372</td>
<td>0.372</td>
<td>0.02</td>
<td>1.0</td>
</tr>
<tr>
<td>pch1z</td>
<td>0.540E−17</td>
<td>0.120E−16</td>
<td>0.336E−6</td>
<td>0.336E−6</td>
<td>0.359</td>
<td>0.359</td>
<td>0.02</td>
<td>1.0</td>
</tr>
<tr>
<td>pch2z</td>
<td>0.450E−18</td>
<td>0.350E−17</td>
<td>0.421E−5</td>
<td>0.421E−5</td>
<td>0.228</td>
<td>0.228</td>
<td>0.02</td>
<td>1.0</td>
</tr>
<tr>
<td>pch3z</td>
<td>0.450E−17</td>
<td>0.450E−17</td>
<td>0.421E−5</td>
<td>0.421E−5</td>
<td>0.228</td>
<td>0.228</td>
<td>0.01</td>
<td>0.98</td>
</tr>
<tr>
<td>pch4z</td>
<td>0.840E−17</td>
<td>0.840E−17</td>
<td>0.150E−6</td>
<td>0.150E−6</td>
<td>0.476</td>
<td>0.476</td>
<td>0.01</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Fig. 9. A plan view of 3-D saturation contours showing the perched water body surrounding UZ-1/14, SD-9, NRG-7a, and G-2.
Fig. 10. Vertical saturation contours along south–north cross-section (E–E') through SD-7, SD-12, SD-9 and G-2 perched water zones.
Fig. 11. Vertical saturation contours along west–east cross-section (E–E') through the UZ-1/14 water zone.
5. Pumping test analysis

Several hydraulic pumping tests have been conducted (Luckey, 1993; Soeder, 1995; O’Brien, 1996, 1997) to study perched water occurrences at several perched water boreholes. Some of these tests have provided useful information on the physical characteristics (water volume, local formation transmissivity) of the perched water, including the tests from UZ-14 and G-2. In this section, numerical pumping test analyses were conducted using one UZ-14 pumping test and one pumping test from G-2, and the 3-D ECM model results in order to calibrate the model for perched water bodies.

5.1. Pumping tests of UZ-14

According to Luckey (1993), four hydraulic pumping tests were conducted in UZ-14 between August 17–27, 1993, and two of the four tests (test 2 and 4) were successful. We selected test 2 for our analysis using the 3-D model. As summarized in Section 2, the perched water body in UZ-14 was encountered at a depth of 381 m, in the lower non-lithophysal unit of Topopah Spring. The static fluid level was at a depth of 1250 ft or 381 m, or at an elevation of 967 m. In test 2, which was conducted on August 19, 1993, water was pumped from the borehole at a rate of 0.90 gal/min for 13 h, and then pumping was stopped. The water level was continuously monitored for 20 more hours. The total pumpage was 6190 gal, and total pumping time was 102.2 h in the four tests. The water level at the borehole near fully recovered in about 5.6 days after the tests were stopped.

In order to analyze the pumping tests using the 3-D site-scale numerical model with a spatially discretized grid, the mesh size must be fine enough to obtain acceptable resolutions in the calculated pressures at the borehole. A locally refined, R–Z mesh was generated and embedded into the perched water layer at UZ-14 (tsw37 or pch37). The locally refined, embedded R–Z grid was centered at UZ-14 with a borehole of radius 12.25 in.

Many numerical simulations were conducted to understand the hydraulic responses of the perched water body, and to match the pumping test results. Several calibrations to the refined R–Z meshes and their properties were carried out to fit both water drawdown and recovery data. The calibrated parameters include the minimum volume of the perched water body and the local horizontal permeability around boreholes. The local horizontal permeability represents local fractures that connect with boreholes and provide pathways for water flow to the borehole on a much smaller scale of 0.1 to 1 m. Also, these calibrated horizontal permeabilities do not contribute to global vertical flow crossing through the entire perched water grid layers at the spatial scale used in the 3-D site-scale model grid (> 10 m). The calibrated results are: (1) the formation volume of a perched water zone is at least at 5.0 × 10^7 m^3, and (2) the perched water zone near UZ-14 can be represented by a radially composite formation with two different local horizontal permeabilities (k = 250 md for R < 150 m, and k = 150 md for R > 150 m).

The comparison of the observed and simulated pumping test results for UZ-14 is shown in Fig. 12 for pumping test 2. Fig. 12 indicates that there is excellent agreement between the observed and simulated water level depth as a function of observation.
Fig. 12. Comparison of the observed and simulated water level drawdown and recovery of pumping test 2 of UZ-14.

times, and the model-predicted water levels not only match the drawdown period of pumping, but also the entire recovery (or build-up) period after pumping stopped. This indicates that both the perched water condition created by the 3-D model and the adjustments in the local horizontal permeability near the borehole are reasonable.

5.2. Pumping test of G-2

A recent pumping test at Borehole G-2 (O’Brien, 1996) was conducted on G-2 from April 8–25, 1996, with pumping for 17 days. The recovery period lasted from April 25, 1996 to December 1996, for more than 236 days. For the pumping period, water was pumped from the borehole at an average rate of 57 gal/min for 17 days, and then pumping stopped. The water level was continuously monitored for 236 more days, after which and there was still about 0.5 m of residual drawdown in this borehole.

The pumping test analysis procedure for G-2 is similar to that used for UZ-14, i.e., a locally refined R-Z mesh is embedded in the 3-D model and is connected to the perched water body in G-2. Next, a series of numerical pumping tests were conducted to compare the simulated hydraulic responses of the perched water body with observed
water drawdown and recovery data. The calibrated parameters include minimum formation volume of perched water body, porosity, and local horizontal permeability. The calibrated results are: (1) the formation volume of the perched water zone is very large on the order of 1.0×10^9 m3, and (2) the perched water zone near G-2 is a radially composite formation with two different local horizontal permeabilities ($k = 1$ d for $R < 40$ m, and $k = 350$ md for $R > 40$ m). This high permeability near the borehole ($R < 40$ m) may be due to hydro-fracturing during the borehole drilling.

Fig. 13 shows the comparisons of the observed and simulated pumping test results for G-2. The plot indicates that there is an excellent agreement between the observed and simulated water level depth vs. observation times. The model predicted water levels not only match the drawdown period of pumping, but these levels also match the over 200-day recovery period.

6. Concluding remarks

This paper presents an example of the application of a numerical model to the study of perched water occurrences in the vadose zone. The modeling analysis was based on a field investigation of perched water at Yucca Mountain. The presence of perched water
at Yucca Mountain has many implications for the hydraulic system, and also may provide useful information to improve our understanding of fluid flow through the mountain. The occurrence of perched water bodies in the unsaturated zone of Yucca Mountain indicates that there exist water-trapping conditions in these formations. It also implies that much higher infiltration rates may have existed in the past, as indicated the modeling results with a historic high-infiltration rate (Wu et al., 1997b), and that there may exist preferential pathways for water to by-pass a perched zone during traveling from the surface to water table. Water that is retarded and diverted by perched zones may flow laterally through fault zones or other high permeability channels, by-passing the low permeability zeolitic units in the CHn. As a result, very non-uniform recharge is expected at the water table.

A 3-D UZ flow model was developed to investigate perched water phenomena at Yucca Mountain. Perched water data from six boreholes were used to calibrate matrix and fracture properties for the 3-D, steady-state model using an areally distributed infiltration map. The steady-state results of this modeling study were in agreement with the observed perched water data, in terms of water saturation and perched water locations. Additionally, a transient numerical pumping test was performed using a 3-D submodel for two boreholes. The numerical pumping test results match well with the observed water level data from pumping to recovery period.

The modeling study and sensitivity analysis of this work indicate that there are several key factors in creating a perched water zone. These factors are: 1) a water perching geologic structure with low permeability zones and/or a capillary barrier underlain and surrounding perched water zones, 2) weak capillary forces under high saturation condition within and near perched water zones, and 3) sufficient water infiltration rates.

Acknowledgements

The authors are grateful to the two reviewers, Ed Kwicklis and Shemin Ge, for their critical review, sharing their expertise and suggestions for improvement of this manuscript. Thanks are also due to R.W. Zimmerman, J. Fairley, H.H. Liu and K. Huang for their careful review of this paper. This work was supported by the Director, Office of Civilian Radioactive Waste Management, US Department of Energy, through Memorandum Purchase Order EA9013MC5X between TRW Environmental Safety Systems and the Ernest Orlando Lawrence National Laboratory (Berkeley Lab). The support is provided to Berkeley Lab through the US Department of Energy Contract No. DE-AC03-76SF00098.

References

Bandurraga, T.M., G.S. Bodvarsson, 1997. Calibrating Matrix and Fracture Properties Using Inverse Model-
